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Abstract
Background: Metabolic networks represent all chemical reactions that occur between molecular metabolites in an organism’s
cells. They o�er biological context in which to integrate, analyze, and interpret "-omic" measurements, but their large scale
and extensive connectivity present unique challenges. While it is practical to simplify these networks by placing constraints on
compartments and hubs, it is unclear how these simpli�cations alter the structure of metabolic networks and the
interpretation of metabolomic experiments.
Results: We curated and adapted the latest systemic model of human metabolism and developed customizable tools to de�ne
metabolic networks with and without compartmentalization in subcellular organelles and with or without inclusion of proli�c
metabolite hubs. Compartmentalization made networks larger, less dense, and more modular; whereas hubs made networks
larger, more dense, and less modular. When present, these hubs also dominated shortest paths in the network, yet their
exclusion exposed the subtler prominence of other metabolites that are typically more relevant to metabolomic experiments.
We applied the non-compartmental network without metabolite hubs in a retrospective, exploratory analysis of metabolomic
measurements from �ve studies on human tissues. Network clusters identi�ed individual reactions that might experience
di�erential regulation between experimental conditions, several of which were not apparent in the original publications.
Conclusions: Exclusion of speci�c metabolite hubs exposes modularity in both compartmental and non-compartmental
metabolic networks, improving detection of relevant clusters in "-omic" measurements. Better computational detection of
metabolic network clusters in large data sets has potential to identify di�erential regulation of individual genes, transcripts,
and proteins.
Key words: metabolism; metabolite; metabolomic; network

Compiled on: October 27, 2019.
Draft manuscript prepared by the author.

1

Manuscript with DOI Click here to access/download;Manuscript;GIGA-D-18-00489_
Waller R1 with DOI.pdf

Click here to view linked References

https://www.editorialmanager.com/giga/download.aspx?id=84254&guid=68d2f354-4f5c-4c93-93df-de1fcba526ac&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=84254&guid=68d2f354-4f5c-4c93-93df-de1fcba526ac&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2586&rev=1&fileID=84254&msid=2521348d-49b7-4667-81ce-b357e107333c


2 | GigaScience, 2017, Vol. 00, No. 0

Background

Life is inherently unstable, and cellular metabolism acts as
its vanguard, continually adapting to sustain balance. This
system is complex, requiring cooperation and coordination be-
tween many types of biochemical entities [1]. Large, polymeric
molecules–lipids, sugars, nucleic acids, and peptides–compose
the cellular structure and machinery to propagate hereditary
information; however, alone these biomacromolecues are life-
less. Genes and transcripts encode the proteins that act as
enzymes to catalyze chemical reactions between smaller con-
stituent molecules, metabolites, and these reactions both assem-
ble biomacromolecules and supply energy to drive their func-
tions. Eukaryotic cells further compartmentalize groups of these
reactions within membrane-bound organelles, utilizing protein
transporters to regulate the exchange of metabolites between en-
vironments. This dynamic interdependence constitutes metabo-
lic regulation.
There is a growing need for strategies to investigate meta-

bolic adaptation in human health and disease. Traditional, re-
ductionist biology tends to conceptualize cellular metabolism as
a collection of separate pathways or processes (groups of reac-
tions) that perform their own unique functions with little in-
teraction. However, a growing body of work has demonstrated
surprising versatility in the metabolic system, especially in hu-
man diseases such as obesity, diabetes, and cancer [2, 3, 4]. Con-
nectivity in metabolism is such that local perturbations such as
mutations or post-translational modi�cations of individual en-
zymes or transporters can impose pervasive e�ects that blur dis-
tinctions between typical pathways and cellular compartments.
It is also common for multiple perturbations to combine coopera-
tively and thereby aggravate complex diseases [5]. Consequently,
the appropriate study of metabolic mechanisms in these diseases
requires experimentation at a systemic level. Modern "-omic"
technologies measure the abundance and modi�cation of genes,
transcripts, proteins, andmetabolites with nearly comprehensive
coverage [6]; however, there is a need for strategies to integrate
this system-wide biological context with functional interpreta-
tions of these measurements [7, 8].
Biological networks are abstract projections that are useful to

study these complex, real systems. Interestingly, even the global
structures of molecular biological networks are informative; pat-
terns of e�cient communication between specialized modules
suggest competing mechanisms of stochastic evolution and natu-
ral selection [9]. Furthermore, networks are computer-readable,
semantic models; and combining this framework with rich com-
pilations of biological knowledge can provide context for integra-
tion, analysis, and interpretation of experimental data [8]. By
mapping measurements to these networks, clusters or patterns
of di�erential measurements implicate speci�c types of perturba-
tion [10]. While there has been more emphasis on networks that
represent gene-gene or protein-protein interactions, metabolic
networks have their own special considerations as they depict a
distinct dimension of cellular biology.
As metabolic networks are abstract projections, their de�ni-

tions can emphasize di�erent aspects of the metabolic system.
This versatility argues for customizability, in particular with re-
gard to compartments and hubs. Subcellular compartmentaliza-
tion within membranous organelles is an important dimension of
metabolism in eukaryotic cells, yet standard metabolomic mea-
surements on bulk samples do not discriminate between pools of
metabolites in separate compartments. Hence, for the sake of an-
alyzing and interpreting these measurements, it may or may not

be reasonable to simplify cellular metabolism by ignoring com-
partmentalization [11]. Also, a few metabolites, such as water,
dioxygen, and carbon dioxide, are especially common reactants
and products in metabolic reactions, and these metabolites dom-
inate connectivity in metabolic networks as hubs [9]. It can be
practical to exclude these hub metabolites from metabolic net-
works in order to expose more subtle network structures [11]. It is
unclear how these simpli�cations for compartmentalization and
hubs alter the structures and properties of metabolic networks.
Here we describe alternative de�nitions ofmetabolic networks

and their relevance in application to experiments. We hypothe-
sized that alternative representations of metabolism using com-
partmental or non-compartmental network models with or with-
out metabolite hubs would di�erentially in�uence the interpreta-
tions of metabolomic experiments. We also explored the potential
for algorithms to detect biologically relevant clusters of metabo-
lomic measurements on these networks. Our goal was to de�ne
these networks and describe their di�erences, while also provid-
ing methods and tools for future use in the community. To this
end, we curated and adapted the latest systemic model of human
metabolism [12]. We designed and developed a web application,
DyMetaboNet [13], with a dynamic, visual interface to illustrate
alternative de�nitions of metabolic networks. We also created
a software package, MetaboNet [14], with procedures to de�ne
these networks from customizable parameters. We then com-
pared these networks by various graph-theory metrics to under-
stand their di�erences. Finally, we demonstrated the application
of one network de�nition as biological context in a retrospective
analysis of metabolomic measurements from multiple previous
studies. All of our data are available in a public archive [15]. This
work informs the future development of standard tools for inter-
pretation of -omic measurements in metabolic experiments.

Data Description

Metabolic model

Systemic metabolic models summarize all chemical reactions be-
tween small-molecular metabolites that occur within an organ-
ism. Another name for these models is genome-scale meta-
bolic reconstructions, with major applications in computational
simulations to predict broader cellular growth and to resolve
�ner metabolic �ux balance analysis through speci�c pathways
[23, 24]. These models are also of more general utility as
they integrate multiple types of functional information within
computer-readable summaries [23, 24]. Information about meta-
bolites includes common names and chemical attributes such
as formula, mass, and charge. Information about reactions in-
cludes common names, directionality and reversibility, reactant
and product metabolites, and compartments where they occur.
Importantly, bothmetabolites and reactions include references to
external databases that o�er both supporting evidence and sup-
plemental information. Relevant references for metabolites in-
clude the Human Metabolome Database (HMDB) [17], PubChem
[18], Chemical Entities of Biological Interest (ChEBI) [25], and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [26]. Rel-
evant references for reactions include KEGG [26], MetaCyc [27],
and Reactome [28]. Also relevant to reactions are references for
genes, transcripts, and proteins such as Entrez Gene [19], Hu-
man Genome Organization (HUGO) Gene Nomenclature Commit-
tee (HGNC) [29], Reference Sequence (RefSeq) [30], Ensembl [31],
UniProt [32], and ExPASy Enzyme Nomenclature Database (Ex-



Waller et al. | 3

A B

C D

1

2
3

4
5

6

A

B

C

D

E

ReactionAMetabolite1

6

1

2

5

E

A

D

ReactionAMetabolite1

3

2

1

4

A

B

ReactionAMetabolite1

3

4

1

A

B

ReactionAMetabolite1

Figure 1. De�nition of metabolic networks with simpli�cations for compartments and hubs. A. Compartmental network. Boxes and ellipse represent compartments.
A compartmental network distinguishes between compartmental instances of otherwise chemically identical metabolites (metabolites 1 and 4, metabolites 2 and 3)
and reactions. Compartmental networks also include reactions to represent transport (reactions B and C) between compartments. B. Non-compartmental version of
network from A. A non-compartmental network combines representations of otherwise chemically-identical metabolites and reactions to consensus representations
(metabolites 1 and 2) and also excludes transport reactions. C. Network with hubs. Metabolite hubs (metabolite 2) participate in many reactions and impart excessive
connectivity to the network. D. Network from C without hubs. Selective exclusion of metabolite hubs simpli�es the network and reveals major structural themes such
as linear or cyclical pathways.

PASy) [20, 21]. Often these metabolic models are speci�c to cellu-
lar metabolism within a single species, and the model of human
metabolism has evolved through many iterations and much ef-
fort from a broad, collaborative community [33, 34, 35, 36, 37, 12].
Several projects have further de�ned tissue-speci�c versions of
the human model for greater speci�city and accuracy [23, 24]. It
is also valuable to integrate and compare models from multiple
species, and repositories of common information across multi-
ple species allow standardization, quality control, and compar-
ison. These repositories include BiGG [38], and MetaNetX [16],
and relevant tools include MetExplore [39]. Metabolic models are
commonly available from repositories in an open format, which
is a standard de�nition of Extensible Markup Language (XML)
known as the Systems Biology Markup Language (SBML) [40].

Metabolomic measurements

Metabolomic technologies separate, identify, and quantify small-
molecules from biological samples. While some studies utilize
Nuclear Magnetic Resonance (NMR), larger studies commonly
employ chromatography with gas (GC) or liquid (LC) mobile
phases that integrate with various forms of mass spectrometry
(MS); and combining measurements from multiple technologies
increases the breadth of a study. Each type of technology has
its own parameters and requirements for processing and analyz-
ing the data. In particular, normalization to total signal in each
sample corrects for loss of material and �uctuation in detector
sensitivity. Furthermore, measurements commonly lack absolute
calibration such that values only represent relative comparisons
between samples. Many data sets from metabolomic studies are
not publicly available; however, there are initiatives to include
more of these data in public repositories, such as the Metabolo-
mics Workbench [41]. Whereas targeted techniques speci�cally
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Table 1. Curation of human metabolic model

Step 1 Metabolites Reactions Compartments Processes

Count: 1725 5772 10 113
MetaNetX: 1682 (97.51%) 4474 (77.51%)

PubChem or HMDB: 951 (55.13%)
Gene or Enzyme: 3929 (68.07%)

Step 2 Metabolites Reactions Compartments Processes

Count: 1725 5772 10 113
MetaNetX: 1682 (97.51%) 4474 (77.51%)

PubChem or HMDB: 1021 (59.19%)
Gene or Enzyme: 3929 (68.07%)

Step 3 Metabolites Reactions Compartments Processes

Count: 1722 3486 8 109
MetaNetX: 1679 (97.50%) 2771 (79.49%)

PubChem or HMDB: 1025 (59.52%)
Gene or Enzyme: 2640 (75.73%)

Curation of systemic model of human metabolism. The goal of curation was to adapt the model for de�nition of networks to represent intracellular metabolism, and to
improve integration of metabolomic measurements. Step 1 was after integration of Recon 2M.2 [12] with MetaNetX [16]. Step 2 was after deriving names and references
for metabolites from HMDB [17]. Step 3 was after curation of individual metabolites and reactions. Summaries comprise counts of metabolites, reactions, compartments,
and processes. Summaries also comprise coverage of metabolites with references to MetaNetX [16], HMDB [17], and PubChem [18], and coverage of reactions with
references to MetaNetX [16], Entrez Gene [19], and ExPASy [20, 21].

study signals from up to 800 unique and identi�able analytes
[11], untargeted studies tend to give much broader coverage and
instead search for observable di�erences in analytes before their
identi�cation. Importantly, there are both chemical and technical
constraints on the measurable metabolome, and the distribution
of detectable metabolites across metabolism is likely nonuniform.
This limitation might in�uence the integration and analysis of
metabolomic measurements on metabolic networks.

Analyses

MetaboNet: Tools for de�nition and analysis of human
metabolic networks

MetaboNet [14], is our main collection of parameters and tools to
de�ne and analyze metabolic networks. This installable package
of code in the Python programming language supports our data
transformations and analyses. We host the most current version
of this package within a repository on GitHub, and stable version
v1.0.0 has a persistent archive [14]. Accompanying the reposi-
tory on GitHub [14] is a tutorial that explains how to install the
package, access necessary external data �les, curate the human
metabolic model, de�ne customizable metabolic networks, ana-
lyze these networks, and integrate metabolomic measurements
for functional study. We also published many of MetaboNet’s in-
termediate and �nal export �les in a data archive [15]. Some users
may �nd it more convenient to access these standard export �les
unless they require further customization of parameters.

Curation and adaptation of the human metabolic model

We curated the latest systemic model of human metabolism and
adapted it to provide biological context in metabolic experiments.
In particular, our goal was to �lter irrelevant reactions from the

model while also optimizing our ability to match metabolomic
measurements to metabolites. Steps 1 and 2 of curation both
comprised enhancements to the information about metabolites
and reactions. We accessed the latest model of human metabo-
lism, Recon version 2M.2 [12, 42], and adjusted its format to facil-
itate importation into MetaNetX [16]. This latter tool was useful
to standardize identi�ers, control for consensus, and include sup-
plemental reference information about metabolites and reactions.
We nextmatchedmetabolites to entries in HMDB [17] to standard-
ize common names and to increase coverage of references both to
HMDB [17] and to PubChem [18]. Step 3 comprised applying �l-
ters and correcting errors. We removed metabolites and reactions
that were primarily relevant to simulations of growth and meta-
bolic �ux, such as biomass accumulation, protein assembly and
degradation, and exchange with the extracellular space or bound-
ary of the system. We next made 197 custom edits for metabo-
lites and 102 custom edits for reactions to improve accuracy and
avoid redundancy. Step 3 simpli�ed the model’s scale substan-
tially (Table 1), e�ectively reducing noise from our subsequent
analyses. Whereas in the original version of the human metabo-
lic model, only 68.07% of 5772 reactions included references to
either Entrez Gene [19] or ExPASy [20, 21], 75.73% of our remain-
ing 3486 �nal reactions include these references (Table 1). These
external references provide supporting evidence and greater con-
�dence in these �nal reactions. Similarly, only 55.13% of the orig-
inal 1725 metabolites included references to either HMDB [17] or
PubChem [18], but in our �nal version of the model 59.52% of
1722 metabolites include these references (Table 1). These com-
monmetabolite identi�ers o�er handles by which to matchmeta-
bolites to metabolomic measurements. A partial explanation for
the incomplete coverage of references for metabolites is that both
metabolomic experiments and databases likely share a bias for
stable, detectable compounds rather than transient metabolic in-
termediates. Our �nal adaptation of the human metabolic model
is accessible in multiple �les and formats within a data archive
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Figure 2. Screen images from DyMetaboNet web application. DyMetaboNet is a web application that de�nes and visualizes custom metabolic networks within the
internet browser. A. With hubs, the Citric Acid Cycle has dense connectivity that obscures its cyclical structure. B. Exclusion of hubs coenzyme-A, carbon dioxide,
proton, and nicotinamide adenine dinucleotide (NAD1+) reveals the overall cyclical structure of the Citric Acid Cycle. C. Queries by proximity (breadth-�rst search)
include nodes within speci�c range of links to a focal node. For example, the user might need to know all reactions in which pyruvate participates. D. Connection
queries (pairwise simple shortest paths) allow construction of subnetworks between multiple metabolites of interest. For example, the user might need to know how
Pyruvate, Citrate, Oxoglutarate, Succinate, Fumarate, Malate, Gutamate, Glutamine, Aspartate, and Asparagine relate to each other. This project’s data archive [15]
includes a screen-capture video of DyMetaboNet that demonstrates these features and more.

[15]. This model is the basis by which we de�ne and study meta-
bolic networks.

DyMetaboNet: Web application for visual exploration of
metabolic networks

To begin our study of human metabolic networks, we designed
and developed a tool to visualize the de�nition and exploration of
the human metabolic network. This tool is an experimental pro-
totype that does not intend to replace the broader functionality of
major tools in network biology [22]. Rather, our application aims
to enhance accessibility and visual interactivity, with integration
of basic �lters, queries, and visual representations for qualita-
tive exploration. Indeed, this tool emphasized to us some major
challenges to the feasibility of applying metabolic networks in
metabolomic experiments.
DyMetaboNet [13] is a dynamic, interactive, and qualitative

partner to MetaboNet [14]. We host the most current version of

this application within a repository on GitHub, and stable ver-
sion v1.0.0 has a persistent archive [13]. This web application
executes code in the JavaScript programming language to control
the behavior of visual elements in the web document. DyMetabo-
Net runs within the user’s internet browser without the need to
maintain a remote server or install special, local software. The
application’s graphical interface interactively controls the de�ni-
tion of networks and their visual representation (Figure 2), with
toggles to represent the network with (Figure 1A) or without
(Figure 1B) compartmentalization, with inclusion (Figure 1C) or
exclusion (Figure 1D) of nodes for speci�c metabolites, and with
�lters by cellular compartments and metabolic processes of inter-
est. For example the user might want to consider only reactions
and metabolites within the Mitochondrion compartment or those
that participate in the Citric Acid Cycle process (Figure 2B). As
the user alters these controls, DyMetaboNet de�nes the network
accordingly and displays its visual representation nearly in real
time, at least for small networks. We acknowledge that there is
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Figure 3. Global structures of metabolic networks. Alternative de�nitions of metabolic networks di�er in global structure. Visual representations of metabolic
networks in Cytoscape [22] with identical visual styles and layout parameters. A. Compartmental network with hubs. B. Compartmental network without hubs. C.
Non-compartmental network with hubs. D. Non-compartmental network without hubs.

substantial latency to compute the layout of larger networks, but
visual representation is obscure for networks of this scale any-
way. Furthermore, DyMetaboNet supports basic graph-traversal
queries to select subnetworks by proximity (breadth-�rst search)
(Figure 2C), shortest paths between source and target nodes (di-
rectional, simple shortest paths), and pairwise shortest paths be-
tween multiple target nodes of interest (Figure 2D). A query by
proximity might be useful where the user needs to know all reac-
tions in which a single metabolite, such as pyruvate, participates
(Figure 2C). A query by shortest paths might be useful when the

user has measurements for two or more metabolites and needs to
know how these relate to each other (Figure 2D). The user can ex-
port tables of information about metabolites and reactions within
these networks and subnetworks. We prepared a screen-capture
video demonstration of these features of DyMetaboNet and made
this video accessible in a data archive [15]. With its interactive
integration of de�nition, query, and visualization, DyMetaboNet
enables a qualitative appreciation for the scale and complexity of
the human metabolic network.
During our design and development of DyMetaboNet [13], we
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Table 2. Graph-theory properties of metabolic networks.

Network Order, Total Order, Metabolites Order, Reactions Size Density

+ Compartments, + Hubs 6208 2735 3473 18800 9.896E-04
+ Compartments, - Hubs 5609 2428 3181 10003 6.476E-04
- Compartments, + Hubs 3908 1654 2254 13204 1.771E-03
- Compartments, - Hubs 3711 1560 2151 6398 9.533E-04
... wrap ...

Central, Degree Central, Between Path Cluster Small World Assortativity

6.912E-05 5.213E-08 6.475E+00 1.052E-01 2.585E+02 9.243E-02
6.021E-06 2.073E-08 1.299E+01 1.454E-01 4.342 E+02 2.884E-01
2.928E-04 1.530E-07 4.743E+00 3.692E-02 6.990E+01 -2.334E-02
1.837E-05 4.217E-08 1.457E+01 7.653E-02 1.557E+02 1.120E-01

We de�ne these graph-theory metrics in Table S2. Order is respective to bipartite sets of nodes for metabolites and reactions. Values in this table for centralization
(degree and betweenness), mean shortest path length, cluster coe�cient, small-world coe�cient, and degree assortativity are relative only to the bipartite set of nodes
for metabolites. Complete metrics for all networks are available in an archive of MetaboNet’s complete export data [15].

recognized a need to describe further the variable structure of the
metabolic network. It soon became apparent to us that the com-
plexity of the metabolic network involved not only its scale but
also its extent of interconnectivity. As DyMetaboNet is a visual
interface, both of these aspects made visual representations ob-
scure. Furthermore, a goal of DyMetaboNet was to support graph
traversal queries, such as by proximity and shortest paths. With-
out intervention, we found that such queries were uninforma-
tive because common metabolites such as water dominated the
network’s connectivity and hence its shortest paths. Finally, Dy-
MetaboNet’s qualitative perspective emphasized extreme di�er-
ences between alternative but reasonable de�nitions of the meta-
bolic network. These observations impressed us as major chal-
lenges to the feasibility of contextualizing metabolomic experi-
ments on appropriate metabolic networks. We therefore decided
to pursue deeper analysis of the metabolic network’s structure
and its dependence on reasonable di�erences in de�nition.

De�nition of metabolic networks

We de�ned multiple network representations of human metabo-
lism. Networks are abstract simpli�cations of complex systems,
and alternative representations can be reasonable while empha-
sizing di�erent aspects of the underlying information. We chose
to keep some de�nitions consistent, while altering other con-
straints to evaluate their in�uence. All of our de�nitions rep-
resent metabolism in a directional bipartite network [43] with
distinct types of nodes for reactions and metabolites (Figure 1D).
This representation is intuitive for interactions between distinct
biological entities. Metabolites are small molecules, whereas re-
actions are chemical events that comprise roles of genes, tran-
scripts, and proteins. Accordingly, nodes in this network store
attributes that match their type of biological entity. Directional
links between these nodes depict relations between metabolites
and reactions, including which metabolites participate as reac-
tants and products and whether the reaction is reversible (Figure
1D). Whereas all links in our networks are weightless, we think
it worthwhile to comment brie�y on the alternative. Assign-
ing weights to reactions’ links might reasonably represent the
metabolically signi�cant conversion of chemical mass or the rates
of metabolic �ux; however, these metrics can be variable (spe-

ci�c to tissue and experimental condition) and di�cult to mea-
sure. Keeping these aspects (bipartite nodes for metabolites and
reactions, directional weightless links) of our de�nitions consis-
tent allowed us to compare di�erences when varying other con-
straints. These additional constraints include compartmentaliza-
tion (Figure 1A, Figure 1B), �lters by compartment and process,
and exclusion of nodes for speci�c metabolites (Figure 1C, Figure
1D). During our work on DyMetaboNet [13], we found these fac-
tors to have a strong e�ect on the metabolic network’s structure.
Constraint 1: Compartmentalization
Our �rst constraint involves compartmentalization. Compart-
mental networks (Figure 1A) include compartment-speci�c in-
stances of otherwise chemically identical metabolites and reac-
tions. These networks also include reactions to represent trans-
port between compartments. Non-compartmental networks
(Figure 1B) aggregate these chemically identical metabolites and
reactions into single, consensus representations that are each
unique. These networks also exclude transport reactions as these
are irrelevant without compartments.
Constraint 2: Filters by compartments and processes
Our second constraint involves �lters by speci�c cellular com-
partments and metabolic processes. These compartments and
processes de�ne sets of metabolites and reactions of interest. For
example the usermight want to consider only reactions andmeta-
bolites within the Mitochondrion compartment. Similarly, the
user might want to consider only reactions and metabolites that
participate in the Citric Acid Cycle process (Figure 2B). Metabo-
Net [14] makes these �lters customizable. In subsequent anal-
yses, we included metabolites and reactions from all compart-
ments and processes to establish a perspective on the entirety of
cellular metabolism.
Constraint 3: Exclusion of speci�c metabolites
Our third constraint relates to the exclusion of speci�c metabo-
lites from the metabolic network. This exclusion means that the
network does not include nodes to represent these metabolites,
and consequently there are also no links to or from them. Re-
gardless of exclusion of nodes and links for a metabolite, reac-
tions themselves still include information about all metabolites
that participate as reactants and products.
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Figure 4. Properties of metabolites’ nodes in metabolic networks. Alternative de�nitions of metabolic networks di�er in dominant in�uence of metabolites’ nodes.
A-E. Upper panels represent compartmental metabolic networks. F-J. Lower panels represent non-compartmental metabolic networks. A, F. Histograms for counts of
metabolite nodes with speci�c degrees in networks with and without hubs. B, C, G, H. Parallel coordinates charts for ranks of metabolites’ nodes in metabolic networks
by degree centrality ("Degree"), betweenness centrality ("Betweenness"), or a mean of these ranks ("Total"). B, G. Ranks of metabolites’ nodes in metabolic networks
with hubs. C, H. Ranks of metabolites’ nodes in metabolic networks without hubs. D, E, I, J. Word cloud visual representations of the in�uences of metabolites’ nodes
in metabolic networks with nodes’ degrees scaled to font size by a factor of 1.0. D, I. In�uences of metabolites’ nodes in metabolic networks with hubs. E, J. In�uences
of metabolites’ nodes in metabolic networks without hubs.

Metabolite hubs are special candidates for exclusion from the
metabolic network. A few metabolites are common reactants and
products in metabolic reactions, such that they contribute a large
proportion of the connectivity in metabolic networks (Table S1)
[11]. These metabolites are hubs, and they are of special inter-
est because they dominate the network’s structure. Exclusion

of these hubs simpli�es connectivity (Figure 1C-D, Figure 2A-B)
and improves resolution to detect trends in other, less dominant
metabolites. We divided these hubs into 2 conceptual categories
on the basis of their relevance to metabolic regulation and exper-
iments.
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Figure 5. Integration and analysis of metabolomic measurements on metabolic networks, Study 1. Metabolomic Study 1 (Table S3) compared the abundances of
177 metabolites between cancerous and normal lung tissues. Clusters of enrichment in fold changes are detectable by integrating measurements within the non-
compartmental network without hubs (Figure 3D). A. Volcano plot of p-values and fold changes in metabolites. B. Scale for color representation of fold changes on
nodes in clusters. Extremes of color scale represent the minimal and maximal fold changes in the entire study. C-E. Clusters in metabolic network are detectable by
enrichment of p-values and fold changes. Metabolite nodes in clusters represent fold changes by color �ll, and they represent p-value by border thickness (p-value <
0.05).

Category 1 Hubs. Category 1 metabolite hubs are less relevant to
metabolic regulation and experiments. Many of thesemetabolites
are proli�cally abundant in the cell. While they are all chemically
essential to metabolic reactions, some of these metabolites, such
as water, dioxygen, and carbon dioxide, are unlikely to partic-
ipate in the type of metabolic regulation that is commonly rel-
evant to experiments. Furthermore, perturbations in the abun-
dance of these metabolites would be di�cult to interpret, and
some of these metabolites are undetectable in metabolomic mea-
surements.

Category 1 Hubs (Table S1): proton, water, dioxygen, phosphate,
diphosphate, carbon dioxide, sulfate, hydrogen peroxide, ammo-
nium, sul�te, sodium, hydrogen carbonate, hydroxide

Category 2 Hubs. Category 2 metabolite hubs are more relevant to
metabolic regulation and experiments. The abundance of these
metabolites in the cell �uctuates in metabolic regulation, and
they are relevant tomanymetabolic experiments. However, some
of these metabolites participate in so many reactions that they

dominate connectivity in the metabolic network. Exclusion of
these metabolites from the metabolic network reveals more sub-
tle trends involving the in�uences of other metabolites that are
of greater interest in some contexts.

Category 2 Hubs (Table S1): coenzyme-A, acetyl coenzyme-A,
acyl-carrier protein, carnitine, nicotinamide adenine dinucleotides,
�avin adenine dinucleotides, nucleoside phosphates
This constraint for exclusion of speci�c metabolites is very

sensitive and requires customization to the context of each meta-
bolic experiment. Consequently, MetaboNet [14] makes the se-
lection of these metabolites customizable. For our subsequent
analyses herein, we chose to evaluate the extreme condition with
exclusion of all metabolite hubs in Category 1 and all metabolite
hubs in Category 2 with degrees greater than 50 (Table S1, Table
S2). Degree is a metric of a node’s connectivity in a network that
we discuss in greater detail later on. We found that the exclusion
of these hubs simpli�ed metabolic networks profoundly and ex-
posed intrinsic structure that enhanced the potential to detect
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relevant clusters in our retrospective analyses of metabolomic
measurements. This extreme approach may not be appropriate
for all experiments, and metabolite hubs in Category 2 deserve
particular attention in the selection of metabolites for exclusion.

Analysis of metabolic networks

We next set out to describe and compare our metabolic networks
both qualitatively and quantitatively. MetaboNet [14] exports net-
works to �le formats compatible for import to Cytoscape, and we
used this latter tool to visualize global networks at high reso-
lution (Figure 3). Within MetaboNet, we also applied multiple
metrics from graph theory (Table S2) to describe and compare
our metabolic networks (Table 2). These bipartite networks have
distinct metrics of centrality, centralization, path-length, cluster
coe�cient, small-world coe�cient, and degree assortativity rela-
tive to their nodes for metabolites and reactions [43]. We chose to
concentrate our analyses on these metrics relative to metabolites
(Table 2), as our primary interest is in the �ow of mass within
the metabolic network and its measurement in metabolomic ex-
periments. Complete metrics for all networks are available in an
archive of MetaboNet’s complete export data [15].
Like many other real systems, metabolism is a small world

[9]. The small-world pattern appears pervasively across net-
works representing real systems, including friendships between
people and connections between internet servers. In a small
world of friendships, any person knows another person vicari-
ously through a few other people, whereas in a small world of
internet servers, any computer communicates with another com-
puter by transferring information through a few intermediate
servers. In addition to their short path lengths, small-world net-
works share strong modularity. This structure favors specializa-
tion and versatility while also allowing for cooperative communi-
cation. These characteristics imply some combination of stochas-
ticity and selection in the formation of these networks, and the
same principles apply to the evolution of biological systems [9].
All of our metabolic networks have extreme values (» 1.0) of the
sigma small-word coe�cient (Table S2, Table 2), and both com-
partmental and non-compartmental networks with hubs have
mean path lengths that are less than the natural logarithms of
their orders (Table S2, Table 2). This strong, small-world char-
acter suggests that the metabolic system relies heavily on mod-
ularity but also that there is e�cient communication and coop-
eration between these modules [9]. Importantly, this structure
implies that both regulatory signals and perturbations pervade
the entire system readily.
Compartmentalization confers major structural properties to

metabolic networks. In their global visualizations, compart-
mental (Figure 3A,B) and non-compartmental (Figure 3C,D)
metabolic networks are noticeably distinct; however, this di�er-
ence is most apparent between the networks with hubs (Figure
3A,C). In this case, compartmentalization introduces dramatic
clusters or modules throughout the network (Figure 3A), giv-
ing the impression that compartments divide and disperse the
metabolic system, decreasing its connectivity. This e�ect is less
apparent between the networks without hubs (Figure 3B,D). To
explore these di�erences further, we applied multiple metrics
from graph theory (Table S2, Table 2). The most obvious obser-
vation from this analysis is that both compartmental networks
have greater orders and sizes than their non-compartmental
counterparts (Table 2). This di�erence in non-compartmental
networks re�ects the absence of replicate nodes for compart-

mental instances of chemically-identical metabolites and reac-
tions (Figure 1) along with the exclusion of reactions that medi-
ate transport across membranes (Figure 1). Another observation
is that compartmentalization creates networks with lesser den-
sity and centralization (Table 2). Consistent with their global
visualizations (Figure 3), these shifts in density, close-range
(degree) centralization, and long-range (betweenness) central-
ization, are greater in the networks with hubs (1.79, 4.24, and
2.93 fold respectively) than in those without hubs (1.47, 3.05,
and 2.03 fold respectively) (Table 2). Compartmentalization also
imparts greater cluster coe�cients, with the shift greater with
hubs (2.85 fold) than without them (1.90 fold) (Table 2). Whereas
mean path lengths and degree assortativity vary little, compart-
mentalization imparts greater small-world coe�cients both with
hubs (3.70 fold) and without (2.79 fold) (Table 2). Together
these observations have interesting biological implications. Com-
partmentalization decreases connectivity in metabolism (density,
centralization) to avoid excessive communication and interaction,
such as through enzyme promiscuity and spurious allosteric in-
teractions between metabolites and proteins [44]. Conversely,
compartmentalization also increases modularity (cluster coe�-
cient), allowing for specialization and regulation within sepa-
rate chemical environments. Surprisingly, this increase in mod-
ularity combines with subtle changes to path lengths such that
compartmentalization actually enhances the small-world char-
acter of metabolic networks. Furthermore, it is interesting that
hubs e�ectively exaggerate most of these e�ects, and we consider
them next.

Metabolite hubs dominate connectivity within metabolic net-
works. In their global visualizations, networks with (Figure 3A,C)
and without (Figure 3B,D) hubs are strikingly distinct. These
hubs introduce apparent connectivity to both compartmental
(Figure 3A,B) and non-compartmental (Figure 3C,D) networks.
As before, metrics from graph theory (Table S2, Table 2) eluci-
date these di�erences. An obvious observation is that networks
without hubs have lesser orders and sizes than their comparisons
(Table 2), due to the exclusion of nodes for these metabolites
(Table S1). Also intuitive from their de�nition is the observa-
tion that hubs impart greater density and centralization (Table
2). These shifts in density, close-range (degree) centralization,
and long-range (betweenness) centralization, are greater in non-
compartmental networks (1.86, 15.9, and 3.63 fold respectively)
than in compartmental networks (1.53, 11.5, and 2.51 fold re-
spectively) (Table 2). Notably, hubs decrease mean path lengths
(Table 2) for both non-compartmental (3.07 fold) and compart-
mental networks (2.01 fold), suggesting that these hubs domi-
nate the majority of shortest paths in their networks. Hubs also
decrease cluster coe�cients and small world coe�cients (Table
2) both without (2.07 fold and 2.23 fold respectively) and with
(1.38 fold and 1.68 fold respectively) compartments. Hubs also
decrease assortativity with and without compartmentalization
(Table 2). Together these observations are relevant to the study
of metabolic networks. Metabolite hubs are likely to dominate
shortest paths in network traversal queries, and they also are
likely to obscure detection of clusters of interest. Their in�uence
is even more profound in non-compartmental networks. Accord-
ingly, the selection of hub metabolites for exclusion (Table S1)
from the network is an important parameter.
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Ranks of metabolites in metabolic networks

To compare metabolic networks from a complementary perspec-
tive, we considered their pro�les of prominent metabolite nodes.
We noticed that metabolites’ nodes in these networks have de-
grees that follow roughly exponential distributions (Figure 4A,F),
an indication of a scale-free network [9]. Importantly, the ex-
clusion of metabolite hubs has its greatest e�ect on those few
nodes with the greatest degrees in both compartmental (Figure
4A) and non-compartmental (Figure 4F) networks. We next
sought to rank metabolites by relative in�uence or weight, com-
bining metrics for degree centrality and betweenness centrality.
Hence, our ranks (Figure 4B-C,G-H) represent the close range
(degree centrality) and long range (betweenness centrality) in-
�uence of metabolites in metabolic networks [45]. In both com-
partmental and non-compartmental networks, the exclusion of
hubs changes dramatically the metabolites with prominent in-
�uences (Figure 4B-E,G-J). Speci�cally, the exclusion of hubs
such as proton, water, coenzyme A, nicotinamide adenine din-
ucleotides, adenosine triphosphate, hydrogen phosphate, and
dioxygen (Figure 4B,D,G,I) allows for other metabolites to rise to
prominence, such as glutamate, pyruvate, glycine, oxoglutarate,
and cholesterol (Figure 4C,E,H,J). These latter metabolites are
more common targets of interest in metabolic regulation and
metabolomic experiments.
Glutamate is an impressive example of connection and coop-

eration in metabolism. While not equal to hub status, this meta-
bolite is particularly promiscuous in metabolic reactions. In both
the compartmental and non-compartmental networks without
hubs, glutamate is the top-ranking metabolite in terms of both
its close and long-range in�uence (Figure 4C,H). In the non-
compartmental metabolic network without hubs, this amino acid
participates in more than 60 reactions in at least 3 di�erent cel-
lular compartments, belonging to about 30 di�erent metabolic
processes. Furthermore, glutamate belongs to 25 di�erent sets
within MetaboAnalyst’s default library for metabolite set enrich-
ment analysis [46]. Whereas analyses of sets isolate Glutamate’s
various roles, analyses of networks integrate these for a holis-
tic perspective. Glutamate illustrates the importance of studying
metabolism as an entire system, not as arbitrarily separate sets
of distinct pathways. Perturbations of this central metabolite are
likely to have pervasive e�ects on the metabolic system, but they
might also be di�cult to interpret in any speci�c context.

Glutamate’s metabolic sets [46]
Malate-Aspartate Shuttle; Glucose-Alanine Cycle; AlanineMeta-

bolism; Glutathione Metabolism; Cysteine Metabolism; Phenylala-
nine and Tyrosine Metabolism; Folate Metabolism; Urea Cycle; Ly-
sine Degradation; Ammonia Recycling; Amino Sugar Metabolism;
Beta-Alanine Metabolism; Aspartate Metabolism; Nicotinate and
Nicotinamide Metabolism; Propanoate Metabolism; Histidine Meta-
bolism; Glutamate Metabolism; Arginine and Proline Metabolism;
Warburg E�ect; Glycine and Serine Metabolism; Tryptophan Meta-
bolism; Valine, Leucine and Isoleucine Degradation; Arachidonic
Acid Metabolism; Tyrosine Metabolism; Purine Metabolism

Selection of metabolic networks for application to meta-
bolomic experiments

Reasonable de�nitions of metabolic networks di�er to the ex-
tent that their application to metabolic experiments warrants
careful selection. These networks o�er potential to facilitate de-
sign of experiments and to contextualize functional interpreta-
tions of metabolomic measurements. Importantly, our analy-

ses demonstrate that constraints by compartmentalization and
metabolite hubs alter the structure of the metabolic network sub-
stantially (Figure 3, Table 2, Figure 4). Hence, it is reasonable
to assume that any subsequent integration and analysis of mea-
surements will depend on the de�nition of the network itself.
The �rst constraint to consider is compartmentalization. Stan-
dard metabolomic techniques do not distinguish between cellu-
lar compartments; rather, a measurement for an analyte, such
as glutamate, represents the total abundance of that analyte in
all types of cells and in all sub-cellular organelles within a sam-
ple. Mapping non-compartmental metabolomic measurements
onto a compartmental metabolic network would require replica-
tion across compartmental instances of each metabolite, and it
would be di�cult or impossible for this replication to represent
the respective sizes of compartmental pools of the metabolite ac-
curately. Selection of a non-compartmental network would avoid
the risk of introducing artifacts or bias from this replication of
measurements. On the other hand, selection of a compartmental
network could enhance functional interpretation by introducing
relevant biological context. The second constraint to consider is
the inclusion of metabolite hubs. These hubs would tend to dom-
inate topological queries on the network, and they would also ob-
scure the detection of clusters of relevant measurements within
the network. Hence the careful selection of hubs for exclusion is
very important. Rather than attempting an exhaustive compari-
son, we selected the non-compartmental network with exclusion
of default metabolite hubs (Table S1). We then performed a trial
of integration and analysis of metabolomic measurements on this
network.

Preparation of metabolomic measurements

Having selected the non-compartmental metabolic network
without hubs, we next prepared to evaluate its application to
retrospective analyses on real metabolomic measurements. As
our model and networks represent intracellular human metabo-
lism, we searched for studies on solid human tissues, rather than
plasma, serum, other body �uids, or excrement. We selected 5
studies with publicly-accessible metabolomic measurements [41]
on samples from fat, lung, liver, and muscle tissues from human
participants (Table S3) [47, 48, 49, 50, 51, 52, 53]. Studies 1, 2,
and 5 are of particular interest as they include pairs of samples
from the same persons across experimental groups, and studies 1,
2, 3, and 4 have previous publications that analyze and interpret
trends in metabolites [47, 49, 51].
We organized metabolomic measurements to compare exper-

imental groups in each study. Each of the �ve studies includes
measurements for 125 or more identi�able analytes, of which at
least 70 (> 57%) match to metabolites in our model of human
metabolism (Table S3). We normalized these measurements to
the total signals for each sample to control for confounding vari-
ance from sample loss or instrument sensitivity. We then com-
pared each metabolite’s abundance between experimental groups
(Table S3), calculating probabilities (p-values) by the student’s t-
test and also calculating the base-two logarithms of fold changes.
For each study, we visualized these fold changes and probabili-
ties simultaneously in volcano plots (Figures 5A, S1A, S2A, S3A,
S4A). These plots e�ectively emphasized metabolites with both
great di�erential abundance and great precision in their mea-
surements, and demonstrated trends of accumulation and deple-
tion in metabolites (Figures 5A, S1A, S2A, S3A, S4A) that were
consistent with those in previous publications of these studies
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[47, 49, 51].

Analysis of metabolomic measurements by set and net-
work enrichment strategies

As a trial application, we compared analyses of metabolomic mea-
surements by a standard set enrichment method and by a gen-
eral cluster enrichment method on our metabolic network. For
the analysis by metabolite set enrichment, we used MetaboAn-
alyst [46], a versatile and popular tool with an accessible web
interface. For the analyses by enrichment in the network’s
clusters, we integrated fold changes and probabilities (p-values)
from metabolomic measurements to matching metabolites in the
non-compartmental metabolic network without hubs. We then
exported this network with measurements to Cytoscape [22],
within which we used the jActiveModules application [54, 55] to
detect clusters with enrichment in measurement probabilites (p-
values). Finally, we searched for clusters exhibiting patterns of
both accumulation and depletion in proximal metabolites (Figure
5, supplemental �gures, Table S4, Table S5). Further details on
these analyses including methods, observations, and preliminary
interpretations are in this article’s sections for Methods and Sup-
plement.
Our analyses reiterated some of the advantages of modeling bi-

ological systems as networks rather than disjoint sets [56, 11]. We
found that the set enrichment analysis was prone to over inter-
pretation of measurements from a few prominent analytes, with
vulnerability to artifacts and false-positives (Table S6). In con-
trast, searching for network clusters exposed trends in a greater
diversity of analytes (Figures 5, S1, S2, S3, S4; Table S4), most of
which did not occur in the top ten hits from set enrichment anal-
ysis (Table S6, Table S4, Table S5). Furthermore, several clusters
were novel even after comparison to the original publications on
these studies [47, 49, 51]. Interestingly, several of these clus-
ters occupied intersections between major metabolic processes
and between separate intracellular compartments (Figures 5, S1,
S2, S3, S4; Table S5). In conclusion, the network enrichment
analysis demonstrated sensitivity to even subtle trends, with res-
olution to identify individual genes, transcripts, and proteins that
were candidates for di�erential regulation between experimental
conditions (Table S5). Our de�nition of the metabolic network
suited these analyses and demonstrated potential for further in-
tegration in methods for high-resolution and high-throughput
analysis of -omic measurements from metabolic experiments.

Discussion

In this project, we describe the e�ects of compartmentalization
and metabolite hubs on distinct de�nitions of systemic metabo-
lic networks. To do so, we derived information about metabolic
reactions from our own custom curation of the latest model of
human metabolism [12] and its integration with other databases
[16, 17, 18]. We developed both a visually interactive web appli-
cation, DyMetaboNet [13], and a customizable package of param-
eters and code, MetaboNet [14], to de�ne di�erent network rep-
resentations of human cellular metabolism. By applying metrics
from graph theory–such as centralization, mean shortest path,
cluster coe�cient, small-world coe�cient, and assortativity–to
these networks, we described major structural distinctions that
depend on compartmentalization andmetabolite hubs. These fac-
tors di�erentiate the biological context accessible for integration
and analysis of -omic measurements within these networks. As

a trial application, we selected the non-compartmental network
without metabolite hubs for a retrospective analysis of metabolo-
mic measurements [41] from multiple studies on human tissues
(Table S3) [47, 49, 51]. We found that a general network enrich-
ment strategy [22, 54, 55] has potential to detect biologically rel-
evant di�erences at junctions between metabolic pathways.
Compartmentalization of metabolic reactions and intermedi-

ates within intracellular organelles and membranes establishes
regulatory environments with chemical specialization. Extensive
interconnectivity between reactions within these separate envi-
ronments contributes to the overall modularity of the network, a
structure that enhances the evolution, versatility, and robustness
of the entire system [9, 57]. Indeed, we observed that compart-
mentalization increases the cluster coe�cients and small-world
coe�cients of metabolic networks. Compartments are also im-
portant to avoid excessive interactions within metabolism, such
as through feed-forward and feed-back allosteric activation or
inhibition [44], as well as enzyme promiscuity; however, these
partitions do not entirely isolate their environments. There is ex-
tensive, e�cient communication and cooperation across cellular
borders, with speci�c signaling mechanisms, transport events,
and even physical connections between organelles to regulate and
enhance these processes [58]. Consistent with this communica-
tion between compartments was our somewhat surprising obser-
vation that compartmentalization does not appreciably alter the
mean shortest path length between metabolite nodes within the
network. Compartmentalization certainly contributes major reg-
ulation to Eukaryotic metabolism, and its representation in meta-
bolic networks warrants careful consideration.
Hubs are a common and in�uential pattern in network rep-

resentations of real systems, with particular relevance to meta-
bolism. Early studies on the topological structures of biological
networks (gene interactions, protein interactions, and metabo-
lic reactions) [9, 57] described their dissortativity, with selection
against direct connections between hubs. This structure con-
trasts with the assortativity that is common in other real sys-
tems, such as social networks in which very friendly people are
more likely to know other very friendly people. While dissorta-
tivity enhances modularity in biological networks, at the extreme
it leaves these systems vulnerable to loss of essential modules.
Further analysis of biological networks revealed a dichotomous
combination of dissortative major hubs with assortative minor
hubs [59], balancing the bene�ts of modularity while mitigating
the vulnerabilities of disconnection. Here, we studied structural
dependencies by omitting metabolite hubs from metabolic net-
works; although, we acknowledge that an alternative and more
moderate simpli�cation of these hubs would be to assign weights
to all links in the network, with lesser weights for links to and
from hubs. We designated metabolite hubs on the bases of their
chemical and metabolic properties and their connections within
the network; very small molecules and ions with proli�c abun-
dances in and around the cell (proton, water, dioxygen, carbon
dioxide, phosphate, etc.) were hubs along with metabolites with
degrees beyond a speci�c threshold (coenzyme A, nicotinamide
and �avin adenine dinucleotides, adenosine phosphates, etc). We
found that excluding nodes and links for these metabolite hubs
exposed impressive structural dependencies in metabolic net-
works. Not only do hubs dominate shortest path lengths between
metabolite nodes, they also decrease the apparent modularity in
terms of cluster coe�cients and small-world coe�cients. Fur-
thermore, we found that these hubs also decrease the assortativ-
ity (increase the disassortativity) of their networks, emphasiz-
ing the relevance of the dissortative and assortative dichotomy
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in metabolism as a quantitative explanation and justi�cation for
this strategy of simpli�cation [59, 11]. Careful representation of
hubs in metabolic networks can expose subtle structure and also
improve resolution in network traversal queries.
Together, MetaboNet and DyMetaboNet demonstrate useful

methods and designs for analysis of metabolomic data. Dy-
MetaboNet emphasizes qualitative exploration of a coherent
metabolic system, by integrating the de�nition and query of net-
works with their visual representations in an interactive inter-
face. In particular, network queries by proximity (breadth-�rst
search) and paths between two or more targets (pairwise short-
est simple paths) enhance this exploration. DyMetaboNet’s per-
spective contrasts with other tools that represent metabolism
as a collection of discrete pathways, each with its own static,
manually-drawn map. Examples include KEGG Atlas [26], Re-
actome [28], and Escher [60]. A limitation is DyMetaboNet’s re-
quirement for automatic layouts in order to draw diagrams of
custom networks. These automatic layouts are often less read-
able than manual layouts and are computationally expensive for
large networks. Also, DyMetaboNet’s compact web application
excels at accessibility, interactivity, and integration of controls
and visualizations; but these advantages disappear due to latency
for larger networks or tasks that require more functionality. In
these scenarios, broader-feature applications such as Cytoscape
andMetscape [22, 61] are preferable. Indeed, after de�ning global
metabolic networks in MetaboNet, we transferred these to Cy-
toscape for further visualization and analysis. Within Cytoscape,
we used the jActiveModules [54, 55] application to detect generic
enrichment in probabilities (p-values) on clusters of proximal
nodes. Our use of this general cluster enrichment method was
exploratory, and we acknowledge the potential for novel network
enrichment algorithms to account for reaction directionality and
patterns of accumulation and depletion in proximal metabolites.
Integrating such a metabolism-speci�c clustering algorithm, to-
gether with detection of patterns across functional categories of
reactions (processes, compartments) [46] and chemical classes
of metabolites [11] might help to prioritize and quantify targets
in metabolomic measurements [10].

Potential implications

Biological models o�er the potential to integrate holistic, func-
tional context in interpretations of -omic measurements [7, 8].
As biological systems thrive on cooperative interactions between
diverse types of entities, computational models tend to simplify
these systems within distinct dimensions, such as networks of
gene-gene, protein-protein, and protein-metabolite interactions
[1]. At the systemic scale, comparatively little is known about
this last dimension of protein-metabolite interactions [62]; al-
though, decades of reductionist experiments demonstrate the
functional relevance of catalysis, transport, and allosteric regula-
tion. Whereas our work here emphasizes only the representation
of catalysis and transport inmetabolic reactions, we await further
exploration of allosteric interactions between proteins and meta-
bolites, whether within an enzymatic active site or otherwise.
This exploration requires technological innovation to accommo-
date low-a�nity interactions and the chemical diversity of the
metabolome. Pioneering work employs either informatic data-
mining [44, 63] or measurements by mass spectrometry to de-
tect physical protein-metabolite interactions [64, 65, 66]. We an-
ticipate that forthcoming, systemic models of allosteric protein-
metabolite interactions will be valuable to integrate with those in

metabolic models. These developments will advance the goal of
integrating multidimensional representations of molecular biol-
ogy [1].

Methods

Procedures for curation, de�nition, and analysis of hu-
man metabolic networks

We developed the MetaboNet package [14] as a transparent and
reproducible record of our curation of the Recon 2M.2 metabolic
model [12] and our de�nition, and analysis of human metabo-
lic networks. This package includes editable tables of parame-
ters to customize curation and de�nition of these networks. Col-
lections of scripts in the Python programming language auto-
mate these procedures. MetaboNet employs functionality from
the SciPy [67], NumPy [68], NetworkX [69], MatPlotLib [70, 71],
and WordCloud [72] packages.
MetaboNet requires sources of information from the Recon

2M.2 model of human metabolism [12], version 4.0 of HMDB
[17], and metabolomic measurements from studies in the Meta-
bolomics Workbench [41]. MetaboNet produces exports for inte-
gration and further analysis in MetaNetX [16], DyMetaboNet [13],
NetworkX [69], MetaboAnalyst [46], and Cytoscape [22]. Metabo-
Net’s README [14] gives more information about installation,
customization, and execution of these procedures. MetaboNet is
available on GitHub under version 3 of the GNU General Public
License [14].

Curation and adaptation of human metabolic model

We accessed the latest model of human metabolism (Table 1). We
accessed information for the Recon 2M.2 model of human meta-
bolism [12] from �le "Recon2M.2_MNX_Entrez_Gene.xml"
(14.2 Megabytes) in record "583326" of the Zenodo repository
[42]. The format of this �le is consistent with level 2 and ver-
sion 4 of the Systems Biology Markup Language (SBML) [40], a
speci�cation of the Extensible Markup Language (XML). This ver-
sion of the Recon 2M.2 model uses derivatives of identi�ers and
names for metabolites from the MetaNetX [16] name space and
references records in Entrez Gene [19] for speci�c genes relevant
to reactions.
We used the tools and repository of MetaNetX [16] and ver-

sion 3.2 of the MNXref namespace to check for consistency and
quality and to standardize the identi�ers and names of metabo-
lites and reactions. To facilitate integration with MetaNetX, we
edited content of the original �le for Recon 2M.2 in SBML for-
mat. We changed identi�ers of metabolites to remove unneces-
sary pre�xes and change the designation of the boundary com-
partment. We also changed identi�ers or names of 104 meta-
bolites and 3 compartments to correct errors and improve map-
ping to the MetaNetX name space. We imported this new version
of Recon 2M.2 to MetaNetX, which matched information about
reactions, metabolites, and compartments to its own records.
Whereas Recon 2M.2 includes distinct entries for compartmental
instances of metabolites, MetaNetX [16] consolidates informa-
tion for chemically-identical metabolites. After reconciliation
and integration to MetaNetX, we exported consensus, standard
information about reactions, enzymes, metabolites, and compart-
ments in text tables with tab delimiters. We derived our own
version of the metabolic model from this information (Table 1).
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We curated and enhanced information about metabolites in
our model of human metabolism. We made 197 custom curations
to information about metabolites, especially to correct and en-
hance references to external databases. We accessed information
for all 114100 records about metabolites in version 4.0 of HMDB
[17], �le "hmdb_metabolites.xml" (4.2 Gigabytes). We matched
the majority of metabolites in the model to records in HMDB, and
derived names from these records. Also from records in HMDB
we derived references to PubChem [18]. Table 1 describes the ex-
tent of curation and coverage of references for metabolites in the
model of human metabolism.
We also curated and �ltered information about reactions in

our model of human metabolism. We made 102 custom curations
to information about reactions, especially to clarify names on the
basis of their references to genes [19]. We interpreted the behav-
ior of reactions in either chemical conversion or compartmental
transport of metabolites. We then included transport reactions
in processes (metabolic pathways) that span multiple compart-
ments and include matching metabolites and compartments with
the reaction. We also �ltered reactions to enhance the model’s
relevance to our analyses. The original Recon 2M.2 model [12]
included many reactions involving the exchange of metabolites
with the model’s boundary and the extracellular compartment,
the accumulation of biomass, and the assembly and degradation
of proteins. While these reactions’ are relevant to simulations of
metabolic �ux, they do not provide relevant context for interpre-
tation of intracellular metabolomic measurements. We removed
them from the model. Table 1 describes the extent of curation
and �ltration of reactions in the model of human metabolism.
We used the �nal human metabolic model for further de�nition
and analysis of metabolic networks both in MetaboNet [14] and
DyMetaboNet [13].

Web application for de�nition and visual exploration of
metabolic networks

We designed and developed the DyMetaboNet web application
[13] for basic de�nition and exploration of human metabolic net-
works. We implemented the application’s interface in the web
document and its behavior in the JavaScript programming lan-
guage. We used the Data-Driven Documents (D3) [73] library for
JavaScript to represent dynamic information visually. The appli-
cation runs in the user’s internet browser independently of any
server. When the user navigates in the internet browser to the
Uniform Resource Locator (URL) of DyMetaboNet’s host (https:
//tcameronwaller.github.io/dymetabonet/), all necessary source
�les and code download to the user’s computer, and the entire
application runs locally on the user’s computer. The internet
browser has a �rewall to contain this information from web ap-
plications and thereby protect the client’s computer. DyMetabo-
Net imports information about metabolites, reactions, compart-
ments, and processes that MetaboNet [14] exports in a �le in
JavaScript Object Notation (JSON) format. From controls in its
interface, DyMetaboNet de�nes custom networks by a similar
method to MetaboNet [13]. Dynamic queries select subnetworks
of interest from these custom networks using our own custom
implementations of common algorithms for proximity (breadth-
�rst search) and paths between two or more nodes (simple short-
est paths) [74]. DyMetaboNet also exports tables of information
about metabolites and reactions in these networks and subnet-
works.

De�nition of custom metabolic networks

We de�ned networks to represent human metabolism. We se-
lected a representation as a directional, bipartite network with
distinct types of nodes for reactions and metabolites (Figure 1).
In this representation, nodes for metabolites only relate to each
other through nodes for reactions, such that reactant metabolites
have links to their reactions and product metabolites have links
from their reactions. Reversible reactions de�ne these links in
both directions.
We de�ned metabolic networks to represent metabolism both

with and without compartmentalization (Figure 1A-B). Our com-
partmental networks include distinct nodes to distinguish be-
tween chemically-identical metabolites and reactions that oc-
cur in separate cellular compartments. Many of these reac-
tions do not mediate any chemical change between metabolites
but instead facilitate transport of metabolites between separate
compartments. Our non-compartmental representation is much
more concise. We only include nodes for chemically-unique
metabolites and reactions. Without compartments, many reac-
tions are chemically-redundant, and we represent these redun-
dant replicates by a single, consensus reaction. Also, reactions
that mediate compartmental transport of metabolites are irrele-
vant without compartments, and we exclude these from the net-
work.
We exert customizable criteria for reactions and metabolites

to qualify for representation in the network. In our model of
metabolism, reactions specify the compartments in which they
occur, and they also specify metabolic processes to which they be-
long. Hence these compartments and processes de�ne sets of re-
actions and metabolites, and the relevance of these sets depends
on the context of experiments. Our procedure accommodates cus-
tomizable lists of compartments and processes to apply as �lters.
Similarly, the relevance of individual reactions and metabolites
depends on the context of experiments. Our procedure also ac-
commodates customizable lists of reactions and metabolites to
include or exclude from the network. By default, we exclude
metabolite hubs from the network (Figure 1C-D, Table S1). To
qualify for representation in the network, reactions must them-
selves not have designations for exclusion, and they must also
belong to sets of compartments and processes that pass �lters.
Similarly, metabolites must participate in relevant reactions in
order to be part of the network. After de�nition of nodes and
links, we selected only the largest connected component from the
network. We then converted the format of information about hu-
man metabolic networks for further analyses in NetworkX [69],
and Cytoscape [22].

Analysis of custom metabolic networks

We applied algorithms and metrics from graph theory to describe
our metabolic networks. Bipartite networks [43] such as ours
require speci�c constraints. Where available, we selected imple-
mentations of appropriate algorithms in version 2.3 of NetworkX
[69]. Where these were unavailable, we implemented our own
tools in the MetaboNet package [14]. Several algorithms calcu-
late metrics relative only to a single bipartite set of nodes, ei-
ther metabolites or reactions. We specify this type of metric by
the phrase "single-mode". For most single-mode metrics, we
only report the values relative to metabolites (Table 2); however,
complete metrics for all networks are available in an archive of
MetaboNet’s complete export data [15]. Furthermore, several al-

https://tcameronwaller.github.io/dymetabonet/
https://tcameronwaller.github.io/dymetabonet/
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gorithms normalize metrics by comparison to their maximal pos-
sibility for a bipartite network with directional links and with
identical counts of nodes in each of its bipartite sets. We spec-
ify this normalization by the phrase "comparison to maximum"
or "comparison to maxima". Other algorithms normalize met-
rics by comparison to their mean across multiple simulations of
random bipartite networks with directional links and identical
counts of nodes in each of their bipartite sets. We specify this
normalization by the phrase "comparison to random".

• To measure density, we used an algorithm from NetworkX
[69] that normalizes the network’s actual size by comparison
to maximum.

• To measure the centralities of individual nodes, we used algo-
rithms fromNetworkX [69] that calculate single-mode degree
and betweenness centralities and normalize these by compar-
ison to maximum [75]. MetaboNet [14] calculates these cen-
tralities relative to the bipartite sets of nodes for both meta-
bolites and reactions respectively. We used these centralities
further to rankmetabolites by a combination of their close (de-
gree) and long-range (betweenness) in�uences in the meta-
bolic networks [45].

• To measure centralization of the entire network, we imple-
mented our own versions of algorithms that calculate single-
mode degree and betweenness centralities and normalize
these by comparison to maximum [76, 75]. MetaboNet [14]
calculates these centralizations relative to the bipartite sets of
nodes for both metabolites and reactions respectively.

• To measure cluster coe�cients of individual nodes, we used
an algorithm fromNetworkX [69] that calculates single-mode
coe�cients [77].

• To measure mean cluster coe�cient of the entire network,
we used an algorithm from NetworkX [69] that calculates the
mean of single-mode coe�cients [77]. MetaboNet [14] calcu-
lates these mean cluster coe�cients relative to the bipartite
sets of nodes for both metabolites and reactions respectively.

• To measure the mean path length of the entire network, we
implemented our own custom version of an algorithm that
calculates the mean of lengths of shortest paths between all
single-mode pairs of nodes [69].

• To measure the small-world coe�cient of the entire net-
work, we adapted the sigma coe�cient [78] for a bipartite
network. Our custom implementation of the sigma coe�cient
algorithm normalizes mean cluster coe�cient and mean path
length by comparison to random [69].

• To measure the degree assortativity coe�cient of the entire
network, we used algorithms from NetworkX [69]. We �rst
projected the bipartite network to a directional, unipartite net-
work relative to either metabolites or reactions, respectively.
We then calculated the degree assortativity coe�cient of each
single-mode projection.

Processing of metabolomic measurements

We curated and processed public metabolomic measurements for
general analyses. We accessed metabolomic measurements from
records for projects and studies within the Metabolomics Work-
bench [41] (Table S3). From these records, we extracted informa-
tion about pairs and experimental groups of samples, total iden-
ti�able and unidenti�able signals for each sample, and measure-
ments of identi�able analytes for each sample. We selected con-
ceptual case and control experimental groups of samples to use

for dividend (numerator) and divisor (denominator) respectively
(Table S3) in calculations of fold changes. We removed analytes
with inadequate coverage of measurements. If multiple analytes
represented the same chemical entity redundantly, we prioritized
the analyte with the least relative variance (index of dispersion or
variance-to-mean ratio) in its measurements for the control ex-
perimental group. We normalizedmeasurements for each sample
to the total sum of signals in that sample. After normalization,
we calculated fold changes, base-2 logarithms of fold changes,
and probabilities (p-values) between measurements for each an-
alyte in samples from each experimental group. These calcula-
tions depended on whether a study’s samples were in dependent
pairs from the same patient. For pairs of dependent samples, we
calculated themean of base-2 logarithms of fold changes formea-
surements from each pair, and we calculated the p-value using
a two-side t-test for dependent populations. For independent
samples, we calculated the base-2 logarithm of the fold change
between the means of measurements from each group, and we
calculated the p-value using a two-side t-test for independent
populations. Our subsequent analyses used the mean base-2 log-
arithm of fold change and the p-value to compare each analyte
between experimental groups. We visualized these values in cus-
tom volcano plots that we implemented using version 3.1.1 ofMat-
PlotLib [70, 71].
We integrated metabolomic measurements in metabolic net-

works for further analysis. Most analytes in Metabolomics Work-
bench [41] include references to PubChem [18], and we used
these references to match analytes to metabolites in our metabo-
lic model. We manually critiqued all matches between analytes
and metabolites for accuracy.

Analysis of metabolomic measurements in metabolic
sets

We performed metabolite set enrichment analysis using version
4.0 of MetaboAnalyst [46]. We organized metabolomic measure-
ments in a format appropriate for export to MetaboAnalyst. For
compatibility, it was necessary to prepare measurements from all
studies as though samples were independent, without pairs. We
speci�ed not to use any of the normalization options in Metabo-
Analyst. We tested for enrichment in MetaboAnalyst’s default li-
brary of 99 metabolic sets [46], considering those with 2 or more
members. For each study, we summarized the sets with the top
5 ranks by p-value (Table S6).

Integration and analysis of metabolomic measurements
in metabolic network

We integrated metabolomic measurements from each study
(Table S3) with our metabolic network and searched for interest-
ing clusters. We used our non-compartmental metabolic network
without hubs for analyses of metabolomic measurements. We
matched analytes and measurements to metabolites by common
references to PubChem [18]. We imported information about the
network and measurements into version 3.7.1 of Cytoscape [22]
and used version 3.2.1 of the jActiveModules application [54, 55]
in Cytoscape to detect raw clusters of proximal metabolites with
enrichment in p-values. We detected these raw clusters in sets
of 25 at search depths of 2 links with overlap thresholds of 0.25,
0.50, and 0.75. On nodes for metabolites in these raw clusters
we represented the base-2 logarithm fold change in bidirectional
color saturation. We then searched these raw clusters prioritizing
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those with 3 or fewer reactions in which the majority of meta-
bolites had measurements, and in which proximal metabolites
demonstrated both accumulation and depletion. From these raw
clusters we curated �nal clusters of interest (Figures 5, S1, S2, S3,
S4; Table S4; Table S5), excluding metabolites without measure-
ments and including proximal metabolites with measurements
that are biologically relevant. We curated names and con�rmed
accuracy of genes for all reactions in these �nal clusters. We also
collected references to Entrez Gene [19] and UniProt [32] for these
reactions. We summarized measurements and information about
metabolites (Table S4) and reactions (Table S5) within these clus-
ters.

Availability of source code and requirements

Curation of the human metabolic model; de�nition, analysis, and
export of custom metabolic networks; processing metabolomic
measurements and integration with metabolic networks.
• Project name: MetaboNet
• Project home page: https://github.com/tcameronwaller/

metabonet
• Operating system(s): platform independent
• Programming language: Python 3
• Other requirements: SciPy, NumPy, NetworkX, MatPlotLib,
WordCloud

• License: GNU General Public License version 3
Dynamic de�nition and visual exploration of metabolic net-

works.
• Project name: DyMetaboNet
• Project home page: https://github.com/tcameronwaller/

dymetabonet
• Operating system(s): platform independent
• Programming language: JavaScript
• Other requirements: Data-Driven Documents (D3)
• License: GNU General Public License version 3

Availability of supporting data and materials

This article’s analyses used v1.0.0 of MetaboNet [14] and v1.0.0
of DyMetaboNet [13]. The data for these analyses are available in
record "3382296" of the Zenodo repository [15]. Snapshots of our
code and other supporting data are available in the GigaScience
repository GigaDB [79].
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